If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+19x-360=0
a = 4; b = 19; c = -360;
Δ = b2-4ac
Δ = 192-4·4·(-360)
Δ = 6121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{6121}}{2*4}=\frac{-19-\sqrt{6121}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{6121}}{2*4}=\frac{-19+\sqrt{6121}}{8} $
| 160x=60 | | 1/5+x=54 | | 8y=5y+10 | | 28+c=62 | | (4x)+(3x+25)+(3x+85)=360 | | (4x)+(3x+25)+(3x+85)=180 | | 130=15x=10 | | 24+6x=16+2x | | X*x+5x-2=11 | | 11x-18-12x=14 | | 15x-135=180 | | 92-(8x-4)=110 | | 92+(8x-4)=110 | | 3(2x-5+8x=5(2x+5) | | X*1.5=x+1.5 | | Y=4x+1/(1.5) | | 135-(x+15)=180 | | (3t+12)/4-(2t-5)/5+(3-7t)/10=t/20 | | r-21=24 | | -5+11x-3=35 | | 2r+53=11r-15 | | x^2-12.7x+1=0 | | 7-2n=-29 | | -8a-7=-95 | | X*1.5=x+100 | | 22/5=100/x | | 23/5=100/x | | 3-0.5=3+n | | 25-100=25-n | | 5w+3-2w=18 | | (89-6x)=(3x+62 | | -5y+1=2(y+4) |